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ABSTRACT 

We prove that if Tis stable, not multi-dimensional theory, then there is an infi- 
nite indiscernible set orthogonal to the empty set. This completes the proof that 
if ~,~ = R/rl > R e -> dr(T), then T has >2 la-~l non-isomorphic ~-saturated 
models of cardinality R,~. 

§0. Introduction 

In [Sh-a, §5] we have dealt with the dividing line " T  stable not multi-dimen- 

sional" for quite saturated models. The point is that as we are not assuming super- 

stability, we do not know regular types exist, so dealing with dimensions is harder. 

One side of  the dichotomy [Sh-a, V5.9] states that if T is stable multi-dimensional 

rr(T)  <- Re, < R¢, T stable in Ra, then T has >_ 2 la-'~l non-isomorphic,  R,~-satu- 

rated models of  power R~. In the proof  we essentially use an F~ -prime model Ms 

over U x e s l x ,  where S c_ {Rv:a  _< ~, _</31 (and Re E S), Ix is indiscernible over 

A U U[I~: /~  E S \ ( X l l ,  Ilxl = x, for every -x -x al ,a2 . . . .  E Ix, stp((t~lx, a2 x . . . . .  ) ,A)  

does not depend on ),, and claim [d im(I ,Ms)  : I _ M indiscernible} is S. 

However,  E. Hrushovski and E. Bouscaren note that a point addressed in the 

middle of  the proof  is ignored in the end: if ISI > x, maybe d im(Ix ,Ms)  > X. 

This is corrected here by giving a better equivalent form to a stable theory be- 

ing multi-dimensional: there is an infinite indiscernible set I with Av( I , l )  orthog- 

onal to •. 

So the p roof  of  [Sh-a, V5.7] works. I thank Udi Hrushovski for discussion on 

this problem. The references to [Sh-a] can be replaced by [Sh-b]. 

tOriginally written November 5, 1988. Publication 429. 
Partially supported by the Israel-United States Binational Science Foundation; I thank Alice Leon- 

hardt for the beautiful typing. 
Received November 16, 1989 and in revised form December 19, 1990. 
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NOTATION. Cb(p) denotes the canonical base of the type p (see [Sh-a, III§6]); 

ctp (p), canonical type (essentially p t Cb (p)) - see there. ± denotes orthogonal; 

.l.w, weakly orthogonal. 

B ~ C means [ B, C } is independent over A ; B IJ  C, the negation of U.  
A A 

P ~t B is the unique q E S<'~(B) parallel to p (if there is one and only one 

such q). 

-<w (see [Sh-a, V§5]), i.e. [p~:i < i '1 <-w q, i f  for every X > I IJ ;Domp;  O 

Dom ql + dr(T) and F~,-saturated model M including Uidompi  U Dom q, we 

have d im(q ,M)  ___ min[dim(pi ,M) : i < i* ]. 

- the type of t~ over B. 
B 

§1. Sharpening the multi-dimensionality dividing line (for stable theories) 

HYPOTHESIS. T Stable, d (T) > P,o. 

(g) 

Then 

1.1. CLAIM. Suppose 

(a) d = dr(T) + ~1 ;  

(b) Mo < M~ < M2, II M~ II = x; 

(c) for every a E ~>(M2), if a ~ ~°>M I then dim ctp ,M2 > X; 

(d) J = Icr: f ~ d} c_ ME iS indiscernible, Av(J ,J )  _L p for every p E S(Mo) 

satisfying dim(p, M2) > h; also c, realizes Av(J,MI U {cr: ~" < d]); 

(e) Mo,M~ are F~-saturated; 

(f) i f  p~ E S(Mo) for i < d, A c_ Mo, IAt < d, B c_ M2, q E S(B)  stationary, 

IBt < ~, Ai<~q ~ Pi and dim(q, M2) > X, then there are q' E S(B ' ) ,  B' c_ 

Mo, Asq '  ~ P~, dim(q',M2) > X, and B',B realize the same type over A; 

i f0E~°M2, O ~ ° M o ,  thend im ctp Mo ' 0 > d .  

Av(J,J)  ± Mo. 

PROOF. Assume not. Let I = [ c, : n < w ]; there is A c_ 3,/o such that l A [ < r, 

( c , : n  < w) 
does not fork over A. By assumption (g) we can find, for a < d+, 

Mo 
(c~': n < w) E Mo such that [(c~ : n < w) : a  < d + } is independent over A, each 

realizing stp((c, :n < o~),A). Let I ~ = [c~' :n < ¢o1; by [Sh-a, V3.4] (the assump- 

tion is the conclusion fails) Av(J,J)  is not orthogonal to A and not orthogonal 
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to Av(I%! ~) for o~ < K +. For each a < r +, Av(U,I  ~) cannot be orthogonal to 
<c~: ~'_< K) 

[as then let M~ be F~-primary over Ml U [ c,~ : c~ < r }, M~' F~-prime 
M1 

over Mf U [c~}; now by [Sh-a, V4.10(2)] 

¢~ ~_ C~ 

M I U I Q : ~ < K }  M~ 

hence M~' is F~-primary over Ml U [ c~, : c~ _< x 1; 

(cr:~'_< K) (c,~ : c~ < ~) 
i fAv(l '~,U) .1_ , then Av(U,MI)  -l-w 

M1 Ml 

hence Av(I'~,M1) [-Av(I ,M1 ), hence by monotonicity Av(I'~'M~) ~-Av(I ,Ml U 

c~) hence, by [Sh-a, V1.2(3)], we have 

Oc t CK I Av(I ,Ml ) _1_ - -  = Av(I ,Ml ), 
M~ 

a contradiction]. 

So for some finite u c_ K + 1, 

,If Av(I~,l~). 
Ml 

Without loss of generality u does not depend on o~ and necessarily (see [Sh-a, 

VI.I(1)]) (cr: ~" E t0 E ME but (Q:  ~" E u) ~ Ml.  By assumption (c) dim((cr: 

E a)/Ml ,M2) > )~, hence by assumption (f) we can find q E S(Mo) such that, 

for a < u, q ,1~ Av(I~,I ~) and dim(q, M2) > )~. Without loss of generality [(c~ : 

n < w ) : a  < K] is independent over (A D Ch(q ) ,A) .  As also [(c~:n < w): 
o~ < K} U [(cn:n < w)} is necessarily independent over (A U Cb(q) ,A) ,  q is also 

not orthogonal to Av(I,I),  but this contradicts assumption (d). 

1.2. CLAIM. ( 1 ) I f B _ M l ,  (Pc S(B), [IM~II = x  (>  Irl + IBI), r=Kr(r),  
Ml is F~-saturated, x > IBI and, for eachp  E (P, dim(p, M1) = )~, then we can 

find I such that: 
I (*)..M,,~, I _ Upevp(Ml),  I independent over B, and for each p E (P, 

letting p+ be the stationarization of p over Ml,  

p + t ( B U I )  I-p +. 

(2) If J ___ M1 is independent over B, IJI < ?, we can demand J c_ I, l \ J  ___ 

[,l~pe 6 ~ p (Ml).  
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PROOF. (1) Without loss of  generality (P is a non-empty set of  non-algebraic 

types and we work in ~ q .  Let [ O~ : tx < X } list all finite sequences from M~. We 

choose by induction on o~ < X, b~ E ~°>M~ such that: 

(i) b,~ (E Up~,p(M|); 
(ii) [ b a :/3 < a } is independent over B; 

(iii) for each c~, let -y(ot) be the minimal ? < X such that for somep  E (P, p+  [,t 

(B U [ b~ :/~ < o~ }) is not weakly orthogonal to 0~ B U  I/~a : ~ < oi l '  and then 
b~ 

fork over B U I ba : 3 < a } (equivalently over B),  
BU lb,:3 < o~1 u e,(.) 
or, if this is impossible, cs(.) has at least two extensions which 

B U I b a : 3 < ~ I  

are complete types over B U {b~:3 <- ~} and does not fork over B U 

{b~:~<~l .  
Easily this suffices (note: I[c~ : ~ ( ~ )  = T}I < ITI+) • The least trivial part is that 

given a,'~(o~) we can find b~ satisfying (i), (ii), (iii). 

By the choice -y(a), the non-trivial case is that there is b~, ~ ~>~ such that 

b" ~ e~(~) and b" 
SUIbo:~<~l B U  Ib~:~ < o~l 

is a stationarization of some Pc E 6 ). Now choose, by induction on ~', b~,¢ E '~>~ 

such that: 

and 

b,,,rU Ib~:B < ~l  U ~ ( ~ ) u  Ib,~,~ : ~ < ~1 
B 

b,~,~ ~ p and I~" U /~,t" 
B O U Ib~ :/~<c*l u e~(~)U Ib~,~ : ~<~'l 

For some ~'< ~(T) ,  b.,~ is defined i f f  ~ < ~'. We can also f ind e c_ e, I"I < ~ such 

that 

Easily 

b'uM~,~u Ubo,~ U B U  {6~:3 E a \ a } .  

® ( 6: ) 
stp B U Ibm : 3 ~ .1 U e~(.)U {b.,~ : ~ < ~'1 

k stp B U { b ~ : 3 < c ~ l U 0 ~ ( ~ ) U { b . , ~ : ~ < ~ ' }  " 
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Now as dim(p, Ml) = k for p E 6 ~, there is an elementary mapping f such that 

f t ( B U  [b~:/3 < or] O g ~ ) )  = id and, for ~ < ~', f(/3,,,~) _cMl. AsM~ is F~-sat- 

urated, by ® above without loss of generality f(6~,) c_ o,>M~. 

Let/3~ = f(/3"). 
(2) Same proof. 

1.3. O.AIM. If k = k <~ > ~+, Tstable in K, c f r  > rr(T) + RI, r >_ ITI, M2 is 

X-saturated of power k +, A* c_ B* c M2, IIA II -< K, then there are Mo, M0 < M2, 
A* c M0, IIMo II = K and I c_ M2 independent over Mo such that for each p E 
S ( M  0 ), p + : ." p ~st M2 (the stationarization of p over M2) satis ties p + t (Mo U I ) ~- 

p+ and tp(M0,B) does not fork over Mofl  B*. 

PRoov. We choose, by induction on ~ < K, Mo.~,M1.~ such that: 

(a) Mo,~ < MI,~ < Mz, 

(b) II Mo,,~ II = ,,, II M,,,~ II = x, 
(c) Mo,~ is saturated increasing in or, 

(d) M~,~ is saturated increasing in a, 

(e) i f  c e M2 (or e e ~>M2), 

dim( c t Cb (---~c ] ,M2] < X, 
\ Ml,~ \ ML~ ] / 

then there is a maximal I c M2 independent over C b ( ~  of elements 
- \ M l , ~ /  

/ \  

realizing c/Cb(C--~-~, such that I c_ Ml ~+1; 
\MI,~] 

equivalently 

(e)' for no c E M 2, 

(f) 

c IJ  M,,,~+, and d i m | - - ~ c  ,M2} / \ <_ X; 
g.~, \gl, ,~ / 

if A _c ML~ ' ]AI < rr(T) + ~1, P~ E S(Mo,~) for i < i* < ~; B c M2, 
IBI < r. c E  M2. 

c M )  c CB stationary, dim ~ ,  z >X, ~ ~Pi  f o r i < t * ,  

then for some elementary mapping h, Dom h = A U B U {c}, h tA = id, 

h(B U {c]) c_ Mo,~+l, 

h(c) 
and for i < i* we have h - ~  '£ Pi. 
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(g) tp(Mo.s ,B*) does not fork over B* N Mo.,,+l and A G Mo.o. 

No problem exists in the inductive construction (as T is stable in x, we have ~ = 

K<"~r)). Let Mo = Us< ,Mo.s ,  M1 = I,.Js<,Ml,s and 6 ~ = S(Mo). By [Sh-a, 

IV4.14] (or 1.2(1)) there is J c_ MI independent over Mo such that: [p E S(MI) ,p  

does not fork over Mo ~ p  t (Mo 13 J) F-p]. By 1.2(2) there is I c_ M2 independent 

over Mo; J G I, l \ J  c_ U p ~ , p ( M 2 )  where (P~ = [p  E (P : dim(p,  M2) > ~,l such 

that for p E 6~t, p fst (Mo O I) k p  t~t M2. It suffices to show that 

p E (~ ~ P f s t  (Mo U l) ~-P ~st M2. 

By the choice of  J for ~ E M~, - -  is weakly orthogonal to p t,t (Mo 13 J) 
M o O I  

for p E ~P, hence also 

- -  -Lw P ~st (Mo 13 I) (for ~ E M~ ) . t  
MoUI 

Hence (for p E 6 ~) :p Ist (Mo 13 I) I-p tst (Ml U I). Let A c_ M2 be such that: 

(i) M~131c_ A C_ M2, 

(ii) P E A ~ - -  ± w P t s t ' ( M ~ U I )  f o r p E ( P ,  
MI U I  

(iii) A is maximal under (i) + (ii). 

Easily (by [Sh-a, V3.2]) A = [M[[, M[ is F~a-saturated (even X-saturated). If  

M~ = M2 we finish, otherwise let c = c~ ~ M~\M~, and choose I = [ c~- : ~" < ~ I c_ 
M~ indiscernible, 

C 
Av(I ,M~) = - -7 ,  

Me 

and we get a contradiction by 1.1 (only x there is replaced by x~(T) + RI here). 

1.4. TaEOgEM. I f  T is multi-dimensional, then there is a (non-algebraic, 

stationary) type orthogonal to the empty set. 

Recall (see [Sh-a, V, Definitions 5.2, 5.3]) 

1.5. 

(?s:ol 
(i) 
(ii) 
(iii) 
(iv) 

DEFINITION. (~) A stable theory T is called multi-dimensional if there is 

-< tz} which is multi-dimensional, which means: 

Iz > Kr(T) ,  

ps = (c~' : n < ~) is an indiscernible set, 

{ P" : a </~ ] is an indiscernible set, 
letting I s = [c~:n < co}, {IS:a  < #] Sw I~, i.e. for some Fa-saturated 

model M, Us<~ I s c_ M, and 

dim(l~,M) < Minldim(lS,M) : o~ < #l .  

tBy [Sh-a, I114.22]. 
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PROOF OF 1.4. We use 1.5's notation. Let K = xr(T) + [T[. Without loss of 

generality ~ > (2 Irl )+; let X = 2 u, Xo = (2 Irl )+; let J~ (ix _ ft) be such that: I ~ U 

J~ is an indiscernible set and J~ is indiscernible over U o ~  Ja and I J ,  [ = X÷. Let 

ME be F~,-primary over U~_<~J~, and let A = Q. Apply Claim 1.3 (with Xo here 

standing for K there). 

So there are Mo c_ Mz of power Xo, and I _c M2 independent over Mo such that: 

] M o n J ~ l = h o f o r ~ < X o ,  

Mo U 
Mort (U,~ ,L,) a 

and for p E S(Mo), p ~st (Mo U I) k p  tst M2. By the proof of 1.3 without loss of 

generality for every a_</~: either IJ~ nMol  =Xoor  J~ does not fork 
Mo U U~.~ J~ 

over Un (Jn O Mo), hence over Mo. By renaming without loss of generality, I J ,  O 

Mol = ho iff a < Xo. There is Mr, Mo c_ M~ __q M2, II M1 II = X, Ml saturated and 
tp.(Ml ,Mo U I) does not fork over Mo U J, where J = M1 n I and IM1 n J~ I = x 

for ct _</~ and ME is F~-constructible over Ml U U~<~ J~ = Ml U U~<, (J~ \Ml  ). 

Let M~ c_ M2 be F~-primary over Ml U ( I \ J ) .  If M2 :~ M), by the conclusion 
, ¢ 

of 1.3 for every c E M2\M2, M--~ is (not algebraic and) orthogonal to Mo, hence 

to 9 ,  the desired conclusion. 

So assume M2 = M~. As any c E J~\M1 realizes Av(J~,Mi) (and as ME = M~), 

we have Av(J~,M1) w -> I tp(d,M~):dE I \ J I .  Now for each d E  I \ J ,  

d 
- -  w > {Av(J~,MI):or _</.t} 
Mi 

(remember M2 is F~,-primary over MI U U~s~(J~\M1)), hence for some u d c_ # + 

1, Ittdl < rr(r) and 

d 
- -  w -> {Av(J~,M1) :or E ttd}. 
M1 

However, by the choice of I and Ml, d ~ MI, hence (by the choice of Mo) with- 
Mo 

out loss of generality, ttd C h0; SO, 

d 
- -  w- > [Av(J~;M1) :t~ < Xo} (for each d E I \ J ) .  
M1 

As 

Av (J~" M~) w-> / ~-~ ] : d E  I \ J  , 
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together (remembering the choice of J,~'s) Av(l",Ml) w_> [Av(I'*,M1 ) :t~ < #l, a 

contradiction. 

1.6. CONCLUSION. If Tis multi-dimensional, Kr(T ) ~ ~c~ < ~3, Tstable in N~, 
then T has >_ 21~-~1 pairwise non-isomorphic F~ -saturated models of cardinal- 

ity ~ .  
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